¹H AND ¹³C NMR STUDIES OF CONFORMATIONAL BEHAVIOUR OF LEU-ENKEPHALIN

C. GARBAY-JAUREGUIBERRY, B. P. ROQUES+ and R. OBERLIN

⁺Département de Chimie Organique, ERA 613 CNRS, Université René Descartes, 4, Avenue de l'Observatoire, 75270 Paris, Cedex 06, France

M. ANTEUNIS

Laboratory for NMR Spectroscopy, University of Gent, Krijgslaan 271, Gent B-9000, Belgium

S. COMBRISSON

Ecole de Physique et Chimie, 10, Rue Vauquelin, 75005 Paris

and

J. Y. LALLEMAND

ENS 24, Rue Lhomond, 75005 Paris, France

Received 15 February 1977

1. Introduction

Since the isolation from brain tissues by Hughes et al. [1] of two pentapeptides (Met-enkephalin and Leu-enkephalin) which interact with opiate receptors, a number of other endogenous peptides have been shown to share this property [2].

All these compounds (except Leu-enkephalin) are fragments of β -lipotropin and have in common the Met-enkephalin 61–65 N-terminal part of this peptide.

We have recently studied by ^{1}H and ^{13}C NMR the preferential conformation of Met-enkephalin in DMSO- d_{6} solution [3,5]. Our results and those of Gibbons obtained indepently [6] are in favour of a folded conformation (β_{I} -turn) bearing a structural analogy between morphine and the N-terminal part of the peptide.

Many synthetic derivatives of enkephalins have been prepared and their affinities for opiate receptors tested [7–9]. Few structural modifications are allowed and decisive features for receptor interaction seem to be the presence and location of the aromatic side chains of the tyrosine and phenylalanine residues.

On the other hand the inactivation of enkephalins has been shown to take place through cleavage of the Tyr—Gly amide bond. From this knowledge, two groups [10,11] have prepared the D.Ala₂ Met-enkephalin which is an enzyme-resistant analog and elicits a potent long-lasting analgesia.

Compared to Met-enkephalin, the natural peptide Leu-enkephalin exhibits a lower affinity for opiate receptors in vitro [9].

In order to obtain informations about the structure activity-relationships between the two natural peptides, we have studied the preferential conformation of Leu-enkephalin in DMSO- d_6 by $^1{\rm H}$ and $^{13}{\rm C}$ NMR.

2. Materials and methods

2.1. Synthesis of Leu-enkephalin

Large quantities of Leu-enkephalin were prepared by standard liquid-phase synthesis as previously described for Met-enkephalin [4] using L.Leu.OMe in place of L.Met.OMe. Leu-enkephalin (F: 216°C) was purified by crystallization (MeOH/H₂O – 9/1).

2.2. Spectroscopic measurements

¹H Spectra were recorded on a Cameca 250 spectrometer operating at 250 MHz in CW mode and equiped with decoupler unit and variable temperature accessories.

 $^{13}\mathrm{C}$ Spectra were recorded on a Varian XL-100 spectrometer operating at 25.2 MHz in FT mode. Measurements of the spin-lattice relaxation time T_1 were made with the $180^{\circ}\mathrm{C}{-}\tau{-}90^{\circ}$ sequence (ten values of τ between 10 ms and 300 ms). The T_1 -values were obtained by regression analysis (0.95 < r < 0.99). T_1 (± 20%) of the carbonyl and aromatic non-protonated carbons were measured by progressive saturation method.

All the chemical shifts are given with respect to external Me₄Si.

The analysis of the $^3J_{\rm NH-CH_2}$ coupling constants of the glycine residues were obtained through simulation of the spectra.

3. Results

3.1. HNMR results

3.1.1. Analysis of Leu-enkephalin ¹H spectra in DMSO-d₆

Figure 1 shows the 1 H spectrum of Leu-enkephalin (4.5 × 10 $^{-2}$ M) in DMSO- d_{6} (100%) at 40°C. Unambiguous proton assignments were obtained from selective

irradiations performed at different temperatures for avoiding overlaps. The assignment of Gly NH-signals was based on the same features as used for Metenkephalin [4].

The experimental data (δ, J) measured at 40°C are reported in table 1 and the derived conformational parameters in table II.

The conformational θ and ϕ dihedral angles [12] are derived from their relationships with the $^3JNH-H\alpha$ vicinal coupling constants [13,14]. The most probable ψ values have been evaluated from steric energy-maps [15]. The rotameric populations of the side chains residues (Tyr, Phe, Leu) around χ_1 -angle and called $^4a,b,c^2$ were extracted from the side chain coupling constants $^3JCH_{\alpha}-CH_{\beta}$ according to Pachler [16].

3.1.2. Temperature-dependence of the NH chemicalshifts

Figure 2 shows the chemical shift variations $\Delta\delta$ of the amide protons versus temperature. Compared to the NH of Gly₂ and Phe₄, the amide protons of Gly₃ and especially of Leu₅ ($\Delta\delta$ = 3.3 × 10⁻³ ppm.d⁻¹) exhibit smaller temperature dependencies. It is worth noting that a small temperature-dependence of an NH proton is often evidence for a hydrogen bond [17] involving this proton but it could only indicate that the NH is buried [18]. In any case the smaller $\Delta\delta$ for the NH of Gly₃ and moreover of Leu₅ are in favour of either a hydrogen bond or a buried position for these protons.

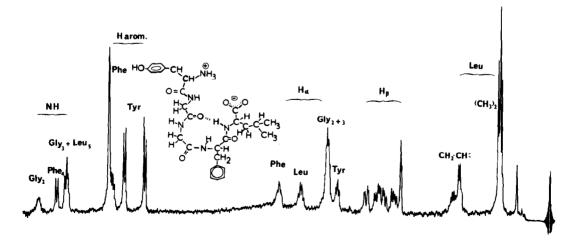


Fig.1. ¹H Spectrum of Leu-enkephalin (4.5 \times 10⁻² M) in DMSO- d_6 at 40°C.

 $\label{eq:table_problem} Table~1$ Chemical-shifts and J-coupling in Leu-enkephalin at $40^{\circ}C$

Residue	Shifts (ppm/TMS)				Coupling constants (J in Hz)				
	H_{α}	Нβ	NH	Other	$^{2}J_{\alpha_{1}\alpha_{2}}$	$^3J_{lphaeta}$	$^{2}J_{eta_{1}eta_{2}}$	$^{3}J_{\mathrm{NH-H}_{\alpha}}$	Other
Tyr,	3.5,	2.9		Arom.		5.0	13.5		$J_{\rm o.m} = 8.5$
		2.6		7.0 H _m 6.7 H _o		8.0			
Gly ₂	3.5		8.4					~4.5 ^a (twice)	
Gly ₃	3.6		7.9		17.8 ^a			5.5-6 ^a (twice)	
Phe ₄	4.5	3.1	8.1	Arom.		4.0	12.0	0.5	
		2.8		7.2		9.5	13.8	8.5	
Leu,	4.1	.1 1.5	7.0	$\text{CH-(CH}_3)_2$		12	1.4	7.8	$JCH-CH_3 = 6.5^{b}$
			7.95	1.6 0.9		1.0	14		$JCH-CH_3 = 6.5^{t}$ $JCH-H_{\beta I} = 5.5^{t}$ $JCH-H_{\beta 2} = 7.5^{t}$

^aComputed values

Chemical-shifts and J-coupling in Leu-enkephalin at 40°C

3.1.3. Determination of the preferential conformation of Leu-enkephalin

From the conformational angles determined in table 2 we can reject a γ -turn [19,20] involving the CO of Gly₃ and NH of Leu₅ for the profit of a β -turn. As for Met-enkephalin [3,4] we suggest a β_1 -bend

to be the lowest energy-chain reversal conformation for Leu-enkephalin. The angular parameters required for this type of bend [18] ($\phi_{i+1} = -60^{\circ}$, $\psi_{i+1} = -30^{\circ}$ and $\phi_{i+1} = -90^{\circ}$, $\psi_{i+2} = 0^{\circ}$) are satisfied when residues i+1 and i+2 are identified with Gly₃ and Phe₄. Consequently such a β_1 -turn does involve the

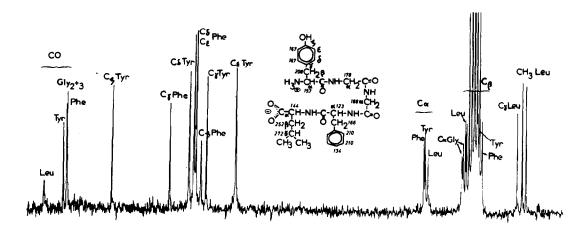


Fig.2. Plots of δNH (ppm) versus temperature (°C).

bComputed values at 90°C

Table 2 Conformational parameters in Leu-enkephalin at 40°C

Residue	θ°	ϕ°	ψ°	Rotamers population			
				a	b	с	
Tyr			± 60 ^a	0.49 ^b	0.22 ^b	0.29	
Gly_2	± 30 ± 120	+ 90 + 30 - 60 ± 180	+ 30 and -60 to -120 ~ + 60 ~ - 30 ± (60 to 180)	•			
Gly ₃	± 10 ± 130	+ 50 ± 70 - 170	+ 30 and -120 ± 30 and -120 ± (60 to 180)				
Phe ₄	+ 150 + 210	- <u>90</u> - 150	0 ± 30 -60 and 120 ± 40	0.63 ^b	0.10 ^b	0.27	
Leu₅	+ 145 + 215	- 85 - <u>155</u>		~ 1.0 ^b	~ 0.0 ^b	~ 0.0	

^aMost probable value

Conformations quoted 'a', 'b' and 'c' are those with $C_{\beta}-C_{R}$ bond antiperiplanar to respectively the carbonyl O=O, the peptide-NH and C_{α} -H bond.

Gly₂, Gly₃, Phe₄ and Leu₅ residues with a hydrogen bond between the CO of Gly₂ and NH of Leu₅ in accordance with the small temperature variation for the NH of Leu₅. A $\beta_{\Pi'}$ -type bend, although predicted [18,21] to be less energetically favoured than a type I cannot be rejected definitively because the values determined for Gly₃ and Phe₄ (table 2) are closed to those described in a $\beta_{\Pi'}$ -type bend (ϕ_{i+1} = +60°, ψ_{i+1} = -120°, ϕ_{i+2} = -80°, ψ_{i+2} = 0°) with these residues at the i + 1 and i + 2 positions of the turn [18].

For the residues not included in the chain reversal we propose to take the values ($\phi_2 = 180^\circ$, $\phi_5 = -155^\circ$) for Gly₂ and Leu₅ which favour a final folded structure with a head-to-tail interaction between NH₃⁺ and COO⁻ as proposed in Met-enkephalin [4].

The somewhat smaller temperature dependence of the NH of Gly₃ cannot be explained by a γ -turn between the CO of Tyr₁ and NH of Gly₃ because the ϕ , ψ values (table 2) are not in accordance with those required [19,20] for such a bend.

Except for Gly₂, the coupling constants are not largely modified by an increase of temperature indicating that the conformation of the backbone is well defined. At 80°C, the coupling constant $^3JNH-CH_2$ in Gly₂ becomes < 0.8 Hz Nevertheless this decrease is not necessarily related to conformational changes. The exchange of the NH-proton following the NH₃ of the first amino acid rises with temperature ($\tau < 1/J$) which prevents the existence of coupling constant [22,23].

The side-chain rotamer populations listed in table 2, show that for Tyr and Phe, the two possible transgauche rotamers are favorised but like in Met-enkephalin the others have significant populations. On the opposite in the residue Leu only one trans-gauche rotamer around χ_1 is populated.

3.2. ^{13}C NMR chemical-shifts and T_1 relaxation times Figure 3 shows the 13 C spectrum of Leu-enkephalin (0.1 M in DMSO- d_6/D_2O , 1/1) at 38°C. The assignments of all the 13 C-resonances were made by comparison with those of Met-enkephalin [5]. The experi-

^bThe attribution of rotamers 'a' and 'b' may be reversed if the signal locations for the β -protons pro R and pro S are opposite

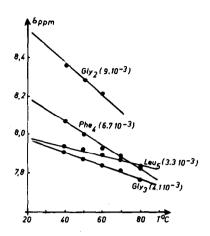


Fig.3. 13C Spectrum of Leu-enkephalin.

Table 3

13C Chemical-shifts and relaxation-time of Leuenkephalin in DMSO-D₂O

СНα	55.2	0.143
$CH_2\beta$	37.1	0.208
Cγ	126.1	1.5
СНδ	131.6	0.167
$CH\epsilon$	116.6	0.167
Cζ	156.4	1.0
C=O	171.9	1.5
CH₂α ^a	43.4	0.178
C=Op	170.9	2.0
CH _• α ^a	43.0	0.188
C=Op	170.8	1.7
СНα	55.5	0.123
CH ₂ β	38.1	0.166
Cγ	137.8	1.6
СНδ	129.4	0.210
$CH\epsilon$	130.1	0.210
СНζ	127.7	0.134
C=Op	170.6	0.9
СНα	55.0	0.144
CH₂β	42.2	0.253
	25.5	0.272
	23.9	1.5
	22.6	1.7
C=Ő	178.2	8.0
	$CH_2\beta$ $C\gamma$ $CH\delta$ $CH\epsilon$ $C\xi$ $C=O$ $CH_2\alpha^a$ $C=O^b$ $CH_2\alpha^b$ $CH\alpha$ $CH_2\beta$ $C\gamma$ $CH\delta$ $CH\epsilon$ CH	$CH_2\beta$ 37.1 $C\gamma$ 126.1 $CH\delta$ 131.6 $CH\epsilon$ 116.6 $C\xi$ 156.4 $C=O$ 171.9 $CH_2\alpha^a$ 43.4 $C=O^b$ 170.9 $CH_2\alpha^a$ 43.0 $C=O^b$ 170.8 $CH\alpha$ 55.5 $CH_2\beta$ 38.1 $C\gamma$ 137.8 $CH\delta$ 129.4 $CH\epsilon$ 130.1 $CH\epsilon$ 130.1 $CH\epsilon$ 127.7 $C=O^b$ 170.6 $CH\alpha$ 55.0 $CH_2\beta$ 42.2 $CH\gamma$ 25.5 $CH_3\delta$ 23.9 $CH_3\delta$ 22.6

abThese assignments may be reversed

mental data (δ, T_1) are reported in table 3. All the protonated ¹³C exhibit a maximum NOE and thus their relaxation is only due to a dipole—dipole mechanism.

The T_1 -values for the CH_α of the backbone are of the same order and these results imply the same correlation time for the motions of all these carbons including those of the terminal residues. Phe₄ and Leu₅ side-chains have significant internal rotational freedom contrasting with that of Tyr_1 -residue which exhibits no reorientation about its $\mathrm{C}_\gamma - \mathrm{C}_\zeta$ axis. All these results were found in Met-enkephalin [5] and the behaviour of Tyr has been attributed to a restricted motion with respect to the backbone and related to the mechanism of ligand—receptor interaction for this peptide [24].

In fact the smaller NT_1 -values of Tyr-residue were also found in the peptide precursors of enkephalin (to be published) and these results show that the T_1 measurements of Tyr should be interpreted with care in terms of conformational behaviour.

4. Conclusion

As shown by the NH temperature-dependence the conformational preference of the backbone of Leuenkephalin is not as well defined as in Met-enkephalin.

In Leu-enkephalin it seems that the energy difference between at least two β -bends is small and there could exist a rapid equilibrium between these forms. However, in all cases it appears that Leu-enkephalin exhibits a highly folded structure as shown by the conformational preference of the Leu₅ side-chain which should not be restricted in a time averaged rotational conformation.

Many structural analogs of the enkephalin were prepared but it seems that the L.Tyr₁- and L.Phe₄-residues are essential for activity [7–9]. Thus the topological requirements between these aromatic rings are certainly of great importance particularly if the Phe-ring is involved in a folded part of the peptide. On the other hand, the replacement of Gly₂ by D.Ala₂ leads to a more active compound because it is not cleaved by the brain enzymes. The inactivation is easily obtained in the natural peptide by the relative freedom of the N.Tyr—Gly moiety. Due to the presence of many conformational rotamers for Tyr and Phe

side-chains, there may not be a simple relationship between the rotamers populations and the side-chain conformations at the receptor, although the *trans*-gauche rotamer of Tyr which presents the best geometrical analogy with morphine is also the most populated. Hence the differences in analgesic potencies between Met-enkephalin and Leu-enkephalin could be related to the life-time of the ligand—receptor complex but cannot be easily explained by our conformational study. Nevertheless such relationships between conformation and affinity for the receptor should be reinvestigated on the various classes of binding sites of enkephalins recently evidenced in ratstriatum [25,26].

Acknowledgements

The authors are grateful to Dr T. Prangé for the simulations of the spectra. This work was supported by the DGRST (Action Complémentaire: Pharmacochimie des polypeptides), la Fondation pour la Recherche Médicale Française and the University of Paris V and Gent.

References

- Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill,
 L. A., Morgan, B. A. and Morris, R. H. (1975) Nature 258, 577-579.
- [2] Guillemin, N., Ling, N. and Burgus, R. (1976) C.R. Acad. Sci. Ser. D 282, 523-526.
- [3] Roques, B. P., Garbay-Jaureguiberry, C., Oberlin, R., Anteunis, M. and Lala, A. K. (1976) Nature 262, 778-779.
- [4] Garbay-Jaureguiberry, C., Roques, B. P., Oberlin, R., Anteunis, M. and Lala, A. K. (1976) Biochem. Biophys. Res, Commun. 71, 558-565.

- [5] Combrisson, S., Roques, B. P. and Oberlin, R. (1976) Tetrahedron Lett. 38, 3455-3458.
- [6] Jones, C. R., Gibbons, W. A. and Garsky, V. (1976) 262, 779-782.
- [7] Morgan, B. A., Smith, C. F. C., Waterfield, A. A., Hughes, J. and Kosterlitz, H. W. (1976) J. Pharm. Pharmac. 28, 660-661.
- [8] Terenius, LI, Wahlström, A., Lindeberg, G., Karlsson, S. and Ragnarsson, U. (1976) Biochem. Biophys. Res. Commun. 71, 175-179.
- [9] Chang, J. K., Fong, B. T. W., Pert, A. and Pert, C. B. (1976) Life Sci 18, 1473-1482.
- [10] Hambrook, J. M., Morgan, B. A., Rance, M. J. and Smith, C. F. C. (1976) Nature 262, 782-783.
- [11] Pert, C. B., Pert, A., Chang, J. W. and Fong, B. T. W. (1976) Science 194, 330-332.
- [12] IUPAC-IUB, Commission of Biochemical Nomenclature (1973) Eur. J. Biochem. 17, 3684-3692.
- [13] Bystrov, V. F., Ivanov, V. T., Portnova, S. L., Balashova, T. A. and Ovchnnikov, Y. A. (1973) Tetrahedron 29, 873-881.
- [14] Cung, M. T., Marraud, M. and Neel, J. (1974) Macromolecules 7, 606-613.
- [15] Goodman, M., Verdini, A. S., Choi, N. S. and Masuda, Y. (1970) in: Topics in Stereochemistry (Eliel, E. L. and Allinger, N. L. eds) Vol. 5, pp. 69-166.
- [16] Pachler, K. G. R. (1964) Spectrochim. Acta 20, 581.
- [17] Ohnishi, M. and Urry, D. W. (1969) Biochem. Biophys. Res. Commun. 36, 194-202.
- [18] Lewis, P. N., Momany, F. A. and Scheraga, M. A. (1973) Biochim. Biophys. Acta 303, 211-229.
- [19] Nemethy, G. and Printz, M. P. (1972) Macromolecules 5, 755-758.
- [20] Matthews, R. W. (1972) Macromolecules 5, 818-819.
- [21] Venkatachalam, C. M. (1968) Biopolymers 6, 1425-1436.
- [22] Robertsand, G. C. and Jardetzky, O. (1970) Adv. Protein Chem 24, 448-533.
- [23] Glickson, J. D., Cunningham, W. D. and Marshall, G. R. (1973) Biochemistry 12, 3684-3692.
- [24] Bleich, H. E., Cutuell, J. D., Day, A. R., Freer, R. J., Glasel, J. A. and McKelvy, J. F. (1976) Proc. Natl. Acad. Sci. USA 73, 2489-2593.
- [25] Audigier, Y., Malfroy-Camine, B. and Schwartz, J. C. (1977) Europ. J. Pharmacol. 41, 247-248.
- [26] Audigier, Y., Malfroy-Camine, B., Morgat, J. L., Roy, J. and Schwartz, J. C. (1976) C. R. Acad. Sci, Paris, in press.